Exploring new radar constraints on cloud microphysical uncertainty Marcus van Lier-Walqui CCSR, Columbia Univsersity & NASA/GISS # "New" radar observations - * Polarimetric Radar - * Not "new" (e.g. Seliga & Bringi 1976) - * Information about shape, phase, habit, particle size distribution of hydrometeors - * Area of active research to determine information relevant to micorphysics - * Doppler Spectra - * Also not new (fundamental derived variable from radar) - * Oth moment: Reflectivity, 1st moment: mean Doppler velocity... - * Vertically pointing: gives information about PSD of precip & air motion. # What questions can polarimetric radar help with? - * What are the characteristics of deep convective updrafts (in mid-latitudes and tropics)? - * Cloud resolving models tend to overestimate w (Varble et al. 2014) - * Multi-Doppler retrievals are far from perfect, can polarimetric radar fill in the gaps? - * www.giss.nasa.gov/staff/mvanlier-walqui/ wind pol 520.html ### Polarimetric radar - Transmit both horizontally and vertically polarized waves - Compare returned horizontal and vertical signals - Provides information on shape/cant/phase, etc. - NWS NEXRAD radar network completed polarimetric upgrade this year ### Polarimetric variables – ZDR #### Differential reflectivity $$Z_{DR} = 10\log_{10}(z_{hh}/z_{vv})$$ - Sensitive to oblateness of particles : rain size - Insensitive to concentration - Strongly affected by attenuation From Wakimoto & Bringi (Monthly Weather Review 1988). ## Polarimetric variables – Φ_{DP} & K_{DP} Differential Phase (Φ_{DP}) & Specific Differential Phase (K_{DP}) - Difference in phase between horizontal and vertical pulses - Similar in some ways to ZDR - Insensitive to attenuation - Sensitive to concentration - $K_{DP} = \text{range derivative of}$ Φ_{DP} ## Polarimetric variables – Φ_{DP} & K_{DP} Differential Phase (Φ_{DP}) & Specific Differential Phase (K_{DP}) - Difference in phase between horizontal and vertical pulses - Similar in some ways to ZDR - Insensitive to attenuation - Sensitive to concentration - $K_{DP}=$ range derivative of Φ_{DP} ## Polarimetric variables – Summary Table 1. Attributes of polarimetric variables (for 5- and 10-cm wavelengths). | Attribute | Independent
of absolute
radar | Immune to propagation effects calibration | Immune to noise bias | Used for quantitative estimation | Independent
of concen-
tration | |-----------------------------|-------------------------------------|---|----------------------|----------------------------------|--------------------------------------| | $Z_{_h}$ | no | no | no | yes | no | | $Z_{\scriptscriptstyle DR}$ | yes | no | no | yes | yes | | K_{DP} | yes | yes | yes | yes | no | | $ ho_{_{hv}}$ | yes | yes | no | no | yes | | δ | yes | no | yes | no | yes | | LDR | yes | no | no | no | yes | ## KDP & ZDR columns #### KDP column no. 1; May 20 2011 -- 10:18:40. # Investigation of KDP columns in deep convective updrafts - * Midlatitude Continental Convective Clouds Experiment (MC3E): OK, Late Spring 2011 - * Analyze KDP observed above the environmental melting level as proxy of deep convective updraft - * Compare with multi-Doppler winds, lightning flash rate, ZDR, precipitation estimates - * Co-authors: Ann Fridlind, Andrew Ackerman, Scott Collis, Jonathan Helmus, Kirk North, Pavlos Kollias, Don MacGorman, Derek Posselt # Identifying KDP columns # Updrafts vs. KDP column volume #### 3-Doppler Updraft & C-SAPR K_{DP} statistics, April 25, 2011 # KDP columns and Intense precipitation #### C-SAPR K_{DP} & Rainrate statistics, April 25, 2011 # KDP columns and lightning flash rate # Also: Spatial statistics of updraft features #### **Nearest-neighbor distances** # Summary: - * Polarimetric radar variables such as KDP provide valuable information related to deep convective updrafts; information that is necessary to constrain model behavior - * Still to do: Detailed comparison with modeled results using bin and bulk microphysical parameterization schemes and a polarimetric foward operator # Profiling radar Doppler spectra - * In-situ observations are available to constrain cloud-top ice properties in stratiform precipitation associated with deep convection: - * http://www.giss.nasa.gov/staff/mvanlier-walqui/kvnx citation 20110520.html - * http://www.giss.nasa.gov/staff/mvanlier-walqui/nexrad gridplots/nex 520 lev07.html - * Microphysics of aggregation of ice largely unconstrained (ie. ice-ice sticking efficiency) # Ice sticking uncertainty #### MC3E # Doppler spectra & the Bayesian aproach - * Doppler spectra from S- and K-band profiling radars provide detailed information on vertical variability of ice (& ice sticking efficiency) - * We can simulate these conditions well -> let the observations directly constrain the microphysics - * We would like to consider all sources of uncertainty & multivariate uncertainty -> Bayes - * Coauthors: Ann Fridlind, Andrew Ackerman, Christopher Williams, Gregory McFarquhar, Wei Wu, Xiquan Dong, Jingyu Wang, Alexei Korolev, Alice Grandin, Walter Strapp # Radar Doppler Spectra # Radar Doppler Spectra # S-band vs. KAZR **ANALYSIS BY C. WILLIAMS** ### Markov chain Monte-Carlo (MCMC) #### General idea: - Use a modified random walk (a Markov chain) to sample the parameter space - Samples in chain are draws from the target distribution - Random walk can be Gaussian or uniform (or anything else) - Each new sample depends only on the previous sample (Markovian property). - Each new sample is accepted or rejected depending on probabilities of the current & proposal samples: $$P(\mathbf{x}_{prop}|\mathbf{x}_{curr}) = min[1, P(\mathbf{x}_{prop})/P(\mathbf{x}_{curr})]$$ (1) | - | x(i) | |---|------| | 1 | 1.3 | | i | x(i) | |---|------| | 1 | 1.3 | | i | x(i) | |---|------| | 1 | 1.3 | | i | x(i) | |---|------| | 1 | 1.3 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | 3 | 2.0 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | 3 | 2.0 | | i | ×(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | 3 | 2.0 | | i | x(i) | |---|------| | 1 | 1.3 | | 2 | 2.0 | | 3 | 2.0 | | 4 | 1.1 | ### Markov Chain Monte Carlo probabilistic sampling MCMC sampler proposes steps in parameter space, accepting/rejecting according to comparison of model to obs # MCMC results - * Preliminary results: - * constraint only by 0th moment of Doppler spectrum (reflectivity - * Perturbed parameters: lce sticking efficiency (global), Total ice mass multiplier (uncertainty in initial ice mass - * van Diedenhoven et al2012 ice treatment # MCMC results - * Preliminary results: - * constraint only by 0th moment of Doppler spectrum (reflectivity - * Perturbed parameters: lce sticking efficiency (global), Total ice mass multiplier (uncertainty in initial ice mass - * Brown & Francis 1995 ice treatment # MCMC results # Temperature-dependent lce sticking efficiency # Summary - * Radar Doppler spectrum being used in probabilistic (Bayesian) framework to estimate microphysical parameters in the presence of model uncertainty and observational error - * Ongoing work: - * Utilize full Doppler spectrum from KAZR - * Robustly estimate temperature-dependence (and other dependence) of ice sticking - * Investigate relevance of uncertainty to CRMs and GCMs #### **KAZR AIR VELOCITY ESTIMATE (DOWNWARD BIASED)**